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Conclusion

The neutron diffraction results are found to support
the conclusions of Jones & Roberts. In particular,
they offer direct structural evidence that the MgFe,0,
sample is incompletely inverted and also that the
aluminjum ions. in MgFeAlO, are, certainly very
largely, in B sites. It is thus possible to explain the
steady variation of unit-cell dimensions (Nicks, 1951)
as aluminium is substituted for iron in MgFe,O,. The
A+ jons in these mixed ferrites enter the B sites,
causing progressive reversion of Mg?t+ into A sites.
The final product is MgAl,O, which, as always assumed
and recently demonstrated directly by neutron dif-
fraction (Bacon, 1952), has a ‘normal’ structure with
Al3t in B sites.

The present study arose as part of an investigation
of certain ferrites at the Post Office Research Station,
Dollis Hill, and was carried out at the Atomic Energy
Research Establishment, Harwell.

The authors are indebted to the Director of the
Atomic Energy Research Establishment and to the
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Engineer in Chief of the Post Office Engineering
Department for permission to publish this paper. They
acknowledge the assistance of Mr R. F. Dyer and Mr
N. A. Curry, of A.E.R.E., with the experimental and
numerical work.
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The X-ray Scattering from a Hindered Rotator. II

By Masao AToJi* AND TORUNOSUKE WATANARBRE

Faculty of Science, Osaka University, Nakanoshima, Osaka, J apan

aND Wirriam N. Lipscoms
School of Chemastry, University of Minnesota, Minneapolis 14, Minnesota, U.S. A.

(Recetved 21 July 1952)

The Laue—Bragg scattering from a group of atoms undergoing hindered rotation has been derived
for a generalized: potential function; this should permit treatment of a non-sinusoidal potential
function as well as the non-classical rotator provided its prokability distribution is known. The
diffuse scattering from a hindered rotator is derived, and shown to be very sensitive to the degree
of hinderance. A method of deriving the scattering from & spacially hindered rotator is also pre-

sented.

Introduction

The amplitude of Laue-Bragg scattering has pre-
viously been derived (King & Lipscomb, 1950) for
hindered rotation of an atom, or group of atoms, about

a fixed axis. A simple sinusoidal potential function
was used for which the constants refer to each in-
dividual atom. It is useful to generalize the potential
function to express the potential of the rotating
group as a whole, and in order to provide for non-
sinusoidal potential functions. The amplitude of Laue—
Bragg scattering has been calculated for this more
general potential function, assuming a classical rotator
with Maxwell-Boltzmann distribution in the pro-
bability function of the rotation angle. A method of
using this potential function in order to include the

case of a distribution of quantum-mechanical rigid
rotators is suggested.

The diffuse scattering from a hindered rotator has
not previously been studied theoretically. The develop-

ment indicated in the second part of the present paper
for the case of a simple sinusoidal potential function
indicates that the diffuse scattering should be very
sensitive to the hindering potential, and quite different
from that of a free rotator or that from atoms in fixed
positions.

In the third part of this paper a general expansion
is given whith simplifies discussion of the spacially
hindered rotator. Fortunately, most known examples

* Present address: School of Chemistry, University of
Minnesota, Minneapolis 14, Minnesota, U.S.A.
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of spacially hindered rotation occur in crystals of high
symmetry, which, it will be observed, simplifies
further the discussion of this relatively complicated
case of hindered rotation.

1. Effect of generalized potential on a hindered
axial rotator

Let the desired potential function of the rotating group
of atoms be approximated as a series,

N
V= —3V,—3 1V, cos (nb—gp,), (1
n=1

where V,, V, and ¢, are constants, and N must be
chosen sufficiently large to give a reasonable ap-
proximation to the desired potential function. It will
be observed that V, is arbitrary, and that only those
V., consistent with the axial symmetry of the expected
potential function are different from zero.
Although the probability function
exp (—V/ET
o2p (VD) @)
S exp (—V/kT)do

0

P(9) =

is evaluated here for a classical distribution of energy-

over various angles 0, a suitable modification can be
proposed if P(6) is known for the quantum mechanical
distribution. The procedure would then be to choose
the constants V, in such a way that when V is
substituted into equation (2) the quantum mechanical
distribution is thereby obtained. Indeed, if the ex-
ponential functions are developed in series, as in-
dicated in the previous paper, the constants ¥V, can
be evaluated by the usual methods for orthogonal
functions.

The average complex amplitude of scattering from
an atom in hindered rotation may be derived by a
method similar to that described previously (King &
Lipscomb, 1950), with the result

g = f exp (2nih - k) {Jy(a)
N oo
+[22l Zli”'”«fpn(a)-’p(bn) cos p(n,+@a)]/1o(ba)} - (3)
n=1 p=

The term Jy(a) is that for the free rotator, and the
approximation involves neglect of products of more
than one summation over the index p. Besides f, h
and ¢, which have their usual meanings, k is the
position vector from the origin to the center of rotation;
Jpm(a) and I,(b,) are the Bessel and modified Bessel
functions, respectively; a = 2n{h||v|sin ¢, where v
is the vector from the center of rotation to the in-
stantaneous position of the atom, and y is the angle
between the axis of rotation and h; b, = V,/(2kT);
and 6, is the angle between the projection of some
standard reciprocal lattice vector h; (selected con-
veniently, but otherwise arbitrarily) and the projection
of h on the plane of rotation. The angles 6 and g,
are also measured in this plane from the projection
of h,

When the potential function applies to the rotation
of the group of atoms as a whole, the amplitude of
Laue-Bragg scattering can be most conveniently
expressed in terms of the way in which the atoms are
linked. The final result, obtained by averaging over
all 6, is

F = 3¢~ 3 f;exp 2mh-k){Jo()
Y 7

N oo
+ [2 Z 2 imen(ai)Ip(bn) cos p(n0+n03)_¢n)]/10(bn)} ’
n=1 p=1 (4)

where 0,; is the angle, measured on the projection
along the axis of rotation, between a standard atom
(chosen arbitrarily) and the jth atom. The summation
extends over the atoms of the group, and the result
is a general expression for the molecular structure
factor of a hindered axial rotator.

Some simplification for numerical calculations can
be achieved for the simple* potential function ¥V =
—34Vycos n(@—y), if use is made of the conclusion
(Pauling, 1930; Pauling & Wilson, 1935, p.292;
Stern, 1931) that the transition between rotation and
oscillation takes place at roughly the temperature
T = Volk. The parameter b = V,/(2kT) then be-
comes b < { for hindered rotation; the probability
distribution can then be approximated by expansion
of the exponential function, neglecting terms of order
b%/2! or higher, as
exp [b cos n(0—y)] 1

~

- 2n[1+b cosn(f—y)].
S exp [b cos n(6—1y)]do (5)
0

P(9)=

For a group of atoms we find
+1"J 4(a;) cos n(B;+y)], (6)

which can be further simplified for numerical cal-
culation (cf. Atoji & Watanabe, 1950). The term in
Jo(a;) corresponds to free rotation. The additional
terms correct according to the degree of hinderance,
and are shown in Fig.1 as functions of ¢ and @,
where a is previously defined and @ = 6,;,—y.

2. Diffuse scattering from a hindered axial rotator

We shall assume a simple potential function V =
—4V, cosn(f—7y), and no correlations among the
rotations of individual groups. While the difference
between diffuse scattering for the hindered rotator as
compared with that for a free rotator would be en-
hanced by these correlations, no consideration has
been made of these effects because of the wide variety
of assumptions that could be made.

. The intensity of diffuse scattering (Zachariasen,
1945, p. 216)

* Application of this discussion to the more general potential
function is straightforward.
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d=n/2

10

15 ]

O=—r/2

Fig. 1. The charts of Jy(a) cos n®. Contours are drawn at equal intervals. The outer contours show the zero value.
(a) Jq(a) cos D. (b) Jy(a) cos 20. (c) Jy(a) cos 3. (d) Jy(a) cos 4D. (e) Jg(a) cos 6D. (f) Jg(a) cos 8D.

Jy = K[|[F*—|F[?], (7)

where K is a constant for a given crystal, may be
evaluated for a single rotating group in each unit cell.
Define l{j,v = kj—kj', Vip = V;—V, 67‘}' = 07'—67",
a=a;,—ay cos 0., a;;=2nlh||v;|siny, f=a;sin by,
and @ = tan~1(8/«); these parameters are exemplified
in Fig. 2 for ethane. Starting from

|Fi? = X X f;f; cos 2mh - (K +vy) ,
i

we expand as follows,

27l - Vi = a; cos (p+0,+6) ,

Axis of Rotation

Fig. 2. Explanation of the notation, showing ethane as an
example.

cos (z cos @) = Jy(2z)+2 Zo,‘o (—1)"J 3m(2) cos 2me ,
m=1

sin (2 cos ) = 2 g’ (—1)"J gmy1(2) cos (2m+-1)p ,

m=1
so that

[F[E = 3 3 fify{cos (2h - ky) [To(ayy)
77

2 <
o7 X (=) ()L (b) cos pr(p+-0,47)]
Iy(0) p=1
pn=2m
. 2
—Sin (27Th . k“r) r(b)

X I (=1)¥7*DJ (@), (b) cos pr(p+0,4-7)}

p=1
pn=2m+1
= 1 .

o2}
XX X s,,ep/i”"(—i)”'"Jm(ai)Jp,n(a,i,)
p=0 p’=0

X I,(b)I,(b) cos pn(f;+y) cos p'n(O;+y), (8)
where ¢, = 1 when p =0, ¢, = 2 where p 3= 0, and
m is a positive integer.

Expressions corresponding to the approximation,
b £}, as discussed above, are
for n = 2m
Jy=KIZX fify cos (2nh - k) {[J(a;)
T (—1)"bJ hayy) cos n{g+04+y)]
—[Jo(@))+(—1)"bJ(a;) cos n(By+y)][Jolay)
+ (— l)men(a’j') cos ”(3sr+)’)]} 2 (9)
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and for » = 2m-+1
J,=K b.) 2 fify (cos (2zh - k;p){J (@)
i

—[Jola;)+i"dJ y(a;) cos n(0+ )] [Jo(ay)
+(—2)"bJ ,(a;) cos n(By+)1}
+sin (27h - K;p)(— 1) (@) cos n(p+0,3+7)) .
(10)

These expressions reduce, as they should, to that for
disorder scattering of a free rotator as b - 0:

Jy =K %‘ 72‘ fify cos (27h - kii') [Jo(aﬁ,)—Jo(aj)Jo(aj,)] .
(11)

The effect of hinderance of the rotation is illustrated
in Fig. 3, which shows intensity contours for & = }
when n = 2 and n = 4, and for the free rotator, for
which & = 0. These contours are calculated from
equation (9) for a homonuclear diatomic molecule
0y ==, ¢ =0), ie. k;; = 0. The expression is
Jy = 2K f2{1+[Jo(2¢)+(—1)™J ,(2c) cos nf]

—2[Jo(c)+(—1)"bJ ,(c) cos mBy1%},  (12)

where n = 2m, d, is the interatomic distance, and
¢ = 2nd, sin p (sin 0)/A. The maxima shown by the
hindered rotator and free rotator are about the same
distance from the centers of the patterns, but the
angular dependence differs considerably, and would be
expected to be even greater if some correlation among
different rotating groups is included. These features
are similar to those shown by tetranitromethane
(Oda, 1945).

3. The spacially hindered rotator

Again assuming the classical distribution, the average
scattering amplitude from a single atom in spacially
hindered rotation about a fixed point may be written as

g ———fSS W (6, ) exp (tox cos w)ds ,

where the integration extends over the surface (of
element ds) of the unit sphere with origin at the center
of rotation. Here

(13)

o = 2xlh|r|,
and
cos w = cos B cos 0,+sin 6 sin 0, cos (p—@3) ,
where w is the angle between h and the position vector
r of the atom, and the polar angles of h and r are
(65, @1) and (0, @), respectively. The probability func-
tion, W(0, ¢), may be represented as

exp [—V/kT]
SS exp [—V/[kT)ds ’

where V = V(0, @) is the hindering potential. We now
expand the exponential functions in surface spherical
harmonics Y, (0, ¢), making use of a ‘singular addition
theorem’ (Magnus & Oberhettinger, 1949, p. 21). The
result is

(14)

ACS6

12
=2
\\ Q
/
(@)
T T
c=0 5 10

c=0 5 10

Fig. 3. A set of intensity contours of the expression
14 J4(2¢) + (— 1)™bJ 5(2¢) cos nby,
—2[Jo(c)+ (- 1)ymbJ n(c) cos nbx]?
for a homonuclear diatomic molecule. For comparison the
intensity contours for free axial rotation of the same
molecule are shown, and correspond to the expression
14+ J4(2¢) —2J3(c).
(@) b=10. (b) n =2, b=}

(¢)n=4,b=

SIS
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exp [—V 0, @)/kT]

= 2 n(a 9‘0) i‘o enAOnPn (cos 0)
n=0 n=0
2‘ 3 en(4 pn cOS M+ By, sinme) Py (cos 0), (15)
n=0 m=1
M, ep [ix cos @] = 3 apjy()P, (cos ), (16)
p=0

where P, (cos §) and P, (cos w) are the Legendre
polynomials, P (cos §) are the associated Legendre
functions, a, = #(2p+1), jy(&) = V[7/(26)]J 13 (c) is
the spherical Bessel function, and the e, are the
coefficients to be determined by the usual methods
for orthogonal functions.

Now, with the use of such orthogonality relations as

Szn Sl Y,(0, 9)P, (cos w)d (cos B)dp
0 J-1

47
= m Yn(oh, ¢h) when n = P
=0 when n % p, (17)
equation (13) reduces to
g= f%;i"enjn(“) Y, (6n @r) oo - (18)

It will be observed that when V/kT = 0 (that is
when n =0, ¢, =1, and 4, = 1) equation (18)
reduces to the expression g = f (sin o)/, which is the
mean amplitude for an atom in free spherical rotation
about a fixed point chosen as the origin.
Fortunately, most crystals showing rotational dis-
order have high symmetry, which simplifies the
application of these equations. Functions appropriate
to the point symmetry O, of the function W(0, ¢)
have been discussed (von der Lage & Bethe, 1947;
Nakamura, 1950), and the resulting amplitude of
scattering from a single atom is given here as an

example:
sino | Y21

z;=f{eo. 2 et

)[P4 (cos 6;)

= P4 (cos 6,)cos 4p;] —V—2§ 65(0) [Ps (cos 6;)

168

Pj (cos §) cos 4,1+ . . }Agol . (19)

360
The average molecular structure factor of a spacially
hindered rotator depends in a complicated manner
on the way in which the atoms are linked and the
specific assumptions concerning the potential function.
As a possible example, however, the amplitude of
scattering from a diatomic molecule having atomic
scattering amplitudes f; and f, may be written as

F = éoin[fljn(o‘l) +f2.7n( 0;,, %)/Aoo ’

which is similar to equation {18 for an individual atom.
These expressions for hindered rotation are de-

og)]en Y. (20)

veloped as modifications of the similar situations for
free rotation, as represented by the first terms in the
expansions. The additional terms depend mostly on
temperature and the heights of potential barriers, and
it is hoped that their evaluation will give some detailed
information about crystalline fields in rotationally
disordered crystals (Atoji, 1951). Besides modifications
to include quantum mechanical rotation, and to study
the effect of correlation on the intensities of Laue—
Bragg and disorder scattering, it would also be desir-
able to develop the theory of scattering for oscillational
disorders of groups of atoms starting from the perfectly
ordered crystal as the first term, if a series development
is promising. However, discussion of these cases of
oscillational disorder as anisotropic temperature
vibrations has been successful for hexamethylene-
tetramine (Shaffer, 1947).

We are indebted to Dr T. Matsubara for'discussion
of some of the mathematical aspects, and to the
Office of Naval Research for financial aid of part of
this research.

Note added 1 August 1952.—There is a close
similarity between some of the mathematical tech-
niques in the present paper and in a paper by Deas
(1952), especially in the use of spherical harmonics
when an average about a point is considered (cf.
Atoji, 1951). Although a common basis of initial
development also exists, both the problems considered,
and the assumptions introduced in their development
are, however, quite different.
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