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C o n c l u s i o n  

The neutron diffraction results are found to support 
the conclusions of Jones & Roberts. In  particular, 
they offer direct structural  evidence tha t  the MgF%04 
sample is incompletely inverted and also tha t  the 
aluminium ions in YlgFeA104 are, certainly very 
largely, in B sites. I t  is thus possible to explain the 
steady variation of unit-cell dimensions (Nicks, 1951) 
as aluminium is substi tuted for iron in MgFe204. The 
A18+ ions in these mixed ferrites enter the B sites, 
causing progressive reversion of Mg 2+ into A sites. 
The final product is MgA1204 which, as always assumed 
and recently demonstrated directly by neutron dif- 
fraction (Bacon, 1952), has a 'normal'  structure with 
A1 a+ in B sites. 

The present s tudy arose as part  of an investigation 
of certain ferrites at  the Post Office Research Station, 
Dollis Hill, and was carried out at the Atomic Energy 
Research Establishment, Harwell. 

The authors are indebted to the Director of the 
Atomic Energy Research Establishment and to the 

Engineer in Chief of the Post Office Engineering 
Department  for permission to publish this paper. They 
acknowledge the assistance of Mr R. F. Dyer and Mr 
N. A. Curry, of A.E.R.E., with the experimental and 
numerical work. 
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The X-ray Scattering from a Hindered Rotator. II 
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The Laue--Bragg scat ter ing from a group of a toms undergoing hindered ro ta t ion  has been derived 
for a general ized-potent ial  funct ion;  this  should permi t  t r ea tmen t  of a non-sinusoidal potent ia l  
funct ion as well as the non-classical ro ta tor  provided i t s  protCabflity dis tr ibut ion is known. The 
diffuse scat ter ing from a hindered ro ta tor  is derived, and shown to be very  sensitive to the degree 
of hinderance. A method  of deriving the scat ter ing from a spat ia l ly  hindered rota tor  is also pre- 
sented. 

Introduction 
The amplitude of Laue-Bragg scattering has pre- 
viously been derived (King & Lipscomb, 1950) for 
hindered rotation of an atom, or group of atoms, about 

a ~ixed axis. A simple sinusoidal potential ~unction 
was used for which the constants refer to each in- 
dividual atom. I t  is useful to generalize the potential 
function to express the potential of the rotating 
group as a whole, and in order to provide for non- 
sinusoidal potential functions. The amplitude of Laue-  
Bragg scattering has been calculated for this more 
general potential function, assuming a classical r~)tator 
with Maxwell-Boltzmann distribution in the pro- 
bability function of the rotation angle. A me.thod of 
using this potential function in order to incluSe the 

case of a distribution of quantum-mechanical rigid 
rotators is suggested. 

The diffuse scattering from a hindered rotator  has 
not previously been studied theoretically. The develop- 

ment indicated in the second part of the present paper 
for the case of a simple sinusoidal potential function 
indicates tha t  the diffuse scattering should be very 
sensitive to the hindering potential, and quite different 
from tha t  of a free rotator  or tha t  from atoms in fixed 
positions. 

In the third par t  of this paper a general expansion 
is given w l ~ h  simplifies discussion of the spacially 
hindered rotator. Fortunately,  most known examples 

* Present address." School of Chemistry, University of 
Minnesota, Minneapolis 14, Minnesota, U.S.A. 
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of spacially hindered rotation occur in crystals of high 
symmetry, which, it will be observed, simplifies 
further the discussion of this relatively complicated 
case of hindered rotation. 

1. Effect  of  g e n e r a l i z e d  p o t e n t i a l  on  a h i n d e r e d  
a x i a l  ro ta tor  

Let the desired potential function of the rotating group 
of atoms be approximated as a series, 

2t 

V = - -½V0--~  ½Vn cos (nO--q2n) , (1) 
n = l  

where V 0, V~ and ~vn are constants, and N must be 
chosen sufficiently large to give a reasonable ap- 
proximation to the desired potential function. I t  will 
be observed that  V 0 is arbitrary, and that  only those 
V~ consistent with the axial symmetry of the expected 
potential function are different from zero. 

Although the probability function 

exp (-- V/kT) 
P(O) = 2= (2) 

fo (-- V/k T) dO exp 

is evaluated here for a classical distribution of energy 
over various angles 0, a suitable modification can be 
proposed if P(O) is known for the quantum mechanical 
distribution. The procedure would then be to choose 
the constants V~ in such a way that  when V is 
substituted into equation (2) the quantum mechanical 
distribution is thereby obtained. Indeed, if the ex- 
ponential functions are developed in series, as in- 
dicated in the previous paper, the constants Vn can 
be evaluated by the usual methods for orthogonal 
functions. 

The average complex amplitude of scattering from 
an atom in hindered rotation may be derived by a 
method similar to that  described previously (King & 
Lipscomb, 1950), with the result 

~ - - f e x p  (2:tih • k){J0(a ) 
N c~ 

+ [2 ~ 2 ivnJv~(a)Ip(bn) cos p(nOh+qDn)]/Io(bn)}. (3) 
n = l  p = l  

The term Jo(a) is that  for the free rotator, and the 
approximation involves neglect of products of more 
than one summation over the index p. Besides f, h 
and i, which have their usual meanings, k is the 
position vector from the origin to the center of rotation; 
Jv,~(a) and Ip(b~) are the Bessel and modified Bessel 
functions, respectively; a : 2:rib[Iv[ sin ~, where v 
is the vector from the center of rotation to the in- 
stantaneous position of the atom, and ~ is the angle 
between the axis of rotation and h; bn = V=/(2kT); 
and 0h is the angle between the projection of some 
standard reciprocal lattice vector h, (selected con- 
veniently, but otherwise arbitrarily) and the projection 
of h on the plane of rotation. The angles 0 and ~vn 
are also measured in this plane from the projection 
of h~. 

When the potential function applies to the rotation 
of the group of atoms as a whole, the amplitude of 
Laue-Bragg scattering can be most conveniently 
expressed in terms of the way in which the atoms are 
linked. The final result, obtained by averaging over 
all O, is 

= 2,' gj~_ .~vfj exp (2~rih. kj){Jo(aj) 
J J 

AT co 

+ [2 Z 2" iP'~Jpn(aj)Ip(bn) cos p(nO+nOsj--q~n)]/Io(bn)}, 
n = l  p = l  (4) 

where 0~j is the angle, measured on the projection 
along the axis of rotation, between a standard atom 
(chosen arbitrarily) and the j th  atom. The summation 
extends over the atoms of the group, and the result 
is a general expression for the molecular structure 
factor of a hindered axial rotator. 

Some simplification for numerical calculations can 
be achieved for the simple* potential function V = 
--½V 0 cos n(O--~,), if use is made of the conclusion 
(Pauling, 1930; Pauling & Wilson, 1935, p. 292; 
Stern, 1931) that  the transition between rotation and 
oscillation tokes place at roughly the temperature 
T----Vo/k. The parameter b-----Vo/(2kT ) then be- 
comes b _< ½ for hindered rotation; the probability 
distribution can then be approximated by expansion 
of the exponential function, neglecting terms of order 
b2/2! or higher, as 

exp [b cos n(0--~,)] P(O)-- 2= 
l0 [b cos n(O--y)]dO e x p  

| 
--~-~ [1 +b  cos n(O--y)]. 

(5) 

For a group of atoms we find 

F = •jfj exp [2~ih • kj] [J0(aj) 
+inbJn(ai) cos n(0q+~)] , (6) 

which can be further simplified for numerical cal- 
culation (cf. Atoji & Watanabe, 1950). The term in 
Jo(aj) corresponds to free rotation. The additional 
terms correct according to the degree of hinderance, 
and are shown in Fig. 1 as functions of a and ~,  
where a is previously defined and ~b = 08j--y. 

2. D i f fuse  s c a t t e r i n g  f r o m  a h i n d e r e d  a x i a l  r o t a t o r  

We shall assume a simple potential function V : 
--½V 0 cos n(0--7), and no correlations among the 
rotations of individual groups. While the difference 
between diffuse scattering for the hindered rotator as 
compared with that  for a free rotator would be en- 
hanced by these correlations, no consideration has 
been made of these effects because of the wide variety 
of assumptions that  could be made. 
, The intensity of diffuse scattering (Zachariasen, 
1945, p. 216) 

* Application of this discussion to the more general potential 
function is straightforward. 
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Fig .  1. T h e  c h a r t s  of Jn(a) cos n~5. Con tou r s  are  d r a w n  a t  equa l  in te rva ls .  The  o u t e r  c o n t o u r s  s h o w  t h e  zero va lue .  

(a) J~(a) cos ~ .  (b) J2(a) cos 2q5. (c) Ja(a)  cos 3 ~ .  (d) J.~(a) cos 4 ~ .  (e) J~(a) cos 6 ¢ .  (f)  Js (a)  cos 8 ~ .  

Je  = K[lEq2--1Fl~],  (7) 

where K is a cons tan t  for a g iven  crystal ,  m a y  be 
eva lua ted  for a single ro ta t ing  group in  each un i t  cell. 
Def ine  kff  = k j - -k j , ,  vff  = v~--vj,, 0~-i, ---- 0~---0j,, 
a=aj--ay cos Off, aff=2~rlh]  lv~j,l sin ~f, fl=aj, sin Off, 
and  9 = tan-l(fl/c~); these  p a r a m e t e r s  are exempl i f i ed  
in  Fig. 2 for e thane.  S ta r t ing  f rom 

IFI 2 = 2 2 fffj, cos 2 ~ h .  (k/ j ,+ vii, ) , 
i i' 

we e x p a n d  as follows, 

2 z h  . v f f  = ai~, cos ( 9 + 0 , s + 0 ) ,  

Axis of Rotation 

h 

Y' 

/ < - z  -.% 

KJ' 0 

Fig. 2. Explanat ion of the notat ion,  showing e thane as an 
example. 

O 0  

cos (z cos 9) ---- J 0 ( z ) +  2 2  (--1)mJ2~(z) cos 2 m 9 ,  
m=l  

O o  

sin (z cos 9) = 2 ~7 (--1)mJ2m+l(Z) cos ( 2 m + 1 ) 9 ,  
ra=l 

so t h a t  

[FI 2 ----- fl_~ Zfff~ ,{cos  (2z~h • kff)[Jo(aiy ) 
j j' 

2 
+ I-~)  ~" (--1)½vnJP'~(aff)Ip(b) cos p n ( ~ + O ~ + 7 )  ] 

Io=l 
pn=2~ 

2 
- - s in  (2~h .  kff)fo(b ) 

× £ ( -  ] )½(~-~)J~(%,)Ip(b) cos ~ @ +  O~s+ r ) } ,  
p=l  

pn= 2m + l 

lY!'- - ~ _~ 2,'fjf~, cos (2~h. kjj,) 
[I,(b)] ~ j j' 

O 0  O 0  

× .~ .~, ev%.ivn(--i)¢'J~(aj)J~,.,(aj.) 
p=O p'=O 

× Ip(b)I¢(b) cos pn(O~;+~) cos p'n(O,,+~), (8) 

where  e v ---- 1 when  p = O, ev = 2 where  p ~ O, a n d  
m is a pos i t ive  integer.  

Express ions  corresponding to the  approx ima t ion ,  
b g ½, as discussed above,  are  

for n ----- 2m 

J,  = K .~ 2 l i l y  cos ( 2 ~ h -  kff) {[Jo(aff) 
i i" +(--1)"bJ,,(aff) cos n ( 9 + 0 # + ~ )  ] 

- - [ J o ( a ; ) +  (--1) 'nbJ, ,(ai)  cos n(O,.i+~)][Jo(ay) 
+(--1)mbJ,,(a.r) cos n ( O , r + ~ ) ] ) ,  (9) 



MASAO ATO,I I ,  T O K U N O S U K ~  W A T A N A B ] ~  AND W I L L I A M  N. L I P S C O M B  

and for n : 2m~-1 

J2 : g ~ .~, fjfj, (cos (2nh .  kff){J0(az, ) 
i J' 

--[Jo(ai)+i"bJ,,(aj) cos n(0~s~-~,)] [Jo(ar) 
+(--i)"bJn(aj,) cos n(0~j.+~)]} 

+ s i n  (27eh • kff)(--1)'n+lbJ,,(ajj.) cos n(q)+O~j+7)). 
(10) 

These expressions reduce, as they should, to tha t  for 
disorder scattering of a free rotator  as b-+ 0: 

J 2  = K Z..~,fjff cos ( 2 ~ h -  k f f ) [ J o ( a f f ) - - J o ( a j ) J o ( a y ) ]  . 
J J' (11) 

The effect of hinderance of the rotation is illustrated 
in Fig. 3, which shows intensity contours for b = ½ 
when n = 2 and n ---- 4, and for the free rotator,  for 
which b----0. These contours are calculated from 
equation (9) for a homonuclear diatomic molecule 
(Off = ~, ~0 : 0), i.e. k z, ---- 0. The expression is 
J2 ---- 2Kff{1 +[Jo(2C)+(--1)"bJn(2c) cos nob] 

--2[Jo(c)+(--1)"bJ~,(c ) cos nOh]~} , (12) 

where n = 2m, d o is the interatomic distance, and 
c----2~zd 0 sin ~ (sin 0)/2. The maxima shown by the 
hindered rotator  and free rotator  are about the same 
distance from the centers of the patterns,  but  the 
angular dependence differs considerably, and would be 
expected to be even greater if some correlation among 
different rotating groups is included. These features 
are similar to those shown by te t rani t romethane 
(0da,  1945). 

c =0 5 10 

3. The  spac ia l ly  h indered rotator 

Again assuming the classical distribution, the average 
sca t te r ingampl i tude  from a single atom in spacially 
hindered rotation about a fixed point may  be written as 

where the integration extends over the surface (of 
element ds) of the unit  sphere with origin at the center 
of rotation. Here 

= 2 : ~ l h l [ r l  , 

and 
cos co : cos 0 cos 0h+sin 0 sin Oh cos (q0--~h) , 

where ~o is the angle between h and the position vector 
r of the atom, and the polar angles of h and r are 
(Oh, ~h) and (0, ~), respectively. The probabili ty func- 
tion, W(O, cp), may be represented as 

exp [-- V/kT] 
II exp[-V/kTla  (14) 
t3 lJ 

where V ---- V(O, ~) is the hindering potential. We now 
expand the exponential functions in surface spherical 
harmonics Yn(O, ~), making use of a 'singular addition 
theorem' (Magnus & Oberhettinger, 1949, p. 21). The 
result  is 
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¢. -: 5 10 

( c )  , . . . . . . . .  ~ "  

c =0 5 10 

Fig .  3. A se t  of i n t e n s i t y  c o n t o u r s  of t h e  e x p r e s s i o n  
1 + J0(2c) + ( --  1)mbJn(2C) cos nob 
- -  2[J0(c ) + ( --  1)mbJn(c ) cos n0h] 2 

fo r  a h o m o n u c l e a r  d i a t o m i c  mo lecu le .  F o r  c o m p a r i s o n  t h e  
i n t e n s i t y  c o n t o u r s  fo r  f ree  ax ia l  r o t a t i o n  of  t h e  s a m e  
m o l e c u l e  a re  s h o w n ,  a n d  c o r r e s p o n d  to  t h e  e x p r e s s i o n  
1 + J0(2c) - -  2 J o  ~ (c). 

(a) b---- 0. (b) n---- 2, b = ~. (c) n = 4, b = ~. 

A C 6  5 
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exp [--V(O, ~o)/kT] 
co 

= ~ enYn(O, 9) = ~T, enAonPn (cos 0) 
n=O n=0 

q- ~L" ~" e,~(Amn cOsmq~q-Bmn sinmT)P~ (cos 0), (15) 
n=0 m=l 

co 
and, exp [ic~ cos w] = 2 aojp(~)Pp (cos 09) , (16) 

p=0 

where P~ (cos 0) and P~ (cos w) are the Legendre 
polynomials, pm (cos 0) are the associated Legendre 
functions, ap = iP(2p+l) ,  jp(¢¢)= V[Te/(2a)]Jn+½(a)is 
the spherical Bessel function, and the e~ are the 
coefficients to be determined by the usual methods 
for orthogonal functions. 

Now, with the use of such orthogonality relations as 

SI'~ S~_IYn(O, qg)P, (cos o~)d (cos O)dqD 

4:~ 
--  2n + 1 Y=(Oh, q)h) when n = p 

= 0  when n # p ,  (17) 

equation (13) reduces to 
co 

: f ~T, i~e~jn(a)Yn(Oh, q~h)A~o ~ • (18) 
n=0 

I t  will be observed tha t  when V/lcT = 0 (that is 
when n = 0 ,  e 0 =  1, and A 0 0 =  1) equation (18) 
reduces to the expression ~ = f (sin a)/c~, which is the 
mean amplitude for an atom in free spherical rotation 
about a fixed point chosen as the origin. 

Fortunately,  most crystals showing rotational dis- 
order have high symmetry,  which simplifies the 
application of these equations. Functions appropriate 
to the point symmetry  0h of the function W(O, q~) 
have been discussed ( v o n d e r  Lage & Bethe, 1947; 
Nakamura,  1950), and the resulting amplitude of 
scattering from a single atom is given here as an 
example: 

s i n ~  [/21 
-g= f e° . ~x q---~e4ja(~x)[P 4 (cosOh) 

1 1/26 ÷1-~ p~ (cos Oh)cos 4~h] - -~- -  %A(~)[P~ (cos 0~) 

1 ~ (cos 0~) 4 ~ ]  q- }Ao 1 (19) 3~)0 P~ cos . . . .  

The average molecular structure factor of a spacially 
hindered rotator depends in a complicated manner 
on the way in which the atoms are linked and the 
specific assumptions concerning the potential function. 
As a possible example, however, the amplitude of 
scattering from a diatomic molecule having atomic 
scattering amplitudes fx and f~ may be written as 

co 

= . ~  i~[f~jn(~)q-f~j~(--~)]enY~(O~, ~h)/Aoo, (20) 
n=0 

which is similar to e q u a t ~ ~ o r  an individual atom. 
These expressions for hindered rotation are de- 

veloped as modifications of the similar situations for 
free rotation, as represented by the first terms in the 
expansions. The additional terms depend mostly on 
temperature and the heights of potential barriers, and 
it is hoped tha t  their evaluation will give some detailed 
information about crystalline fields in rotationally 
disordered crystals (Atoji, 1951). Besides modifications 
to include quantum mechanical rotation, and to s tudy 
the effect of correlation on the intensities of Laue-- 
Bragg and disorder scattering, it would also be desir- 
able to develop the theory of scattering for oscillational 
disorders of groups of atoms starting from the perfectly 
ordered crystal as the first term, if a series development 
is promising. However, discussion of these cases of 
oscillational disorder as anisotropic temperature 
vibrations has been successful for hexamethylene- 
tetramine (Shaffer, 1947). 

We are indebted to Dr T. Matsubara for'discussion 
of some of the mathematical  aspects, and to the 
Office of Naval Research for financial aid of par t  of 
this research. 

Note added 1 August 1952.--There is a close 
similarity between some of the mathematical  tech- 
niques in the present paper and in a paper by Deas 
(1952), especially in the use of spherical harmonics 
when an average about a point is considered (cf. 
Atoji, 1951). Although a common basis of initial 
development also exists, both the problems considered, 
and the assumptions introduced in their development 
are, however, quite different. 
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